Industrial Cybersecurity Pulse
  • SUBSCRIBE
  • Threats & Vulnerabilities
  • Strategies
  • IIoT & Cloud
  • Education
  • Networks
  • IT/OT
  • Facilities
  • Regulations
  • Threats & Vulnerabilities
  • Strategies
  • IIoT & Cloud
  • Education
  • Networks
  • IT/OT
  • Facilities
  • Regulations
  • Resources
  • Helpful Links
  • Editorial Calendar
  • Advertise
  • Contribute
  • Content Partners
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
SUBSCRIBE
  • Resources
  • Helpful Links
  • Editorial Calendar
  • Advertise
  • Contribute
Industrial Cybersecurity Pulse
Subscribe
Industrial Cybersecurity Pulse
  • Threats & Vulnerabilities
  • Strategies
  • IIoT & Cloud
  • Education
  • Networks
  • IT/OT
  • Facilities
  • Regulations
  • Education

Researchers discover a new hardware vulnerability in the Apple M1 chip

  • Rachel Gordon
  • June 14, 2022
Graphic of M1 Chip
Researchers developed the PACMAN attack methodology, which acts as a last step in exploitation, when everything except for pointer authentication has been bypassed. Image: Jose-Luis Olivares/MIT
Total
0
Shares
0
0
0
0

William Shakespeare might have been talking about Apple’s recently released M1 chip via his prose in “A Midnight Summer’s Dream”: “And though she be but little, she is fierce.”

The company’s software runs on the little squares made of custom silicon systems, resulting in Apple’s most powerful chip to date, with industry-leading power efficiency.

Yet despite the chip’s potency, there’s been no shortage of vulnerability grievances, as fears of sensitive data and personal information leaks abound. More recently, the chip was found to have a security flaw that was quickly deemed harmless. 

The M1 chip uses a feature called pointer authentication, which acts as a last line of defense against typical software vulnerabilities. With pointer authentication enabled, bugs that could normally compromise a system or leak private information are stopped dead in their tracks.

Now, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have found a crack: Their novel hardware attack, called PACMAN, shows that pointer authentication can be defeated without even leaving a trace. Moreover, PACMAN utilizes a hardware mechanism, so no software patch can ever fix it.

A pointer authentication code, or PAC for short, is a signature that confirms that the state of the program hasn’t been changed maliciously. Enter the PACMAN attack. The team showed that it’s possible to guess a value for the PAC, and reveal whether the guess was correct or not via a hardware side channel. Since there are only so many possible values for the PAC, they found that it’s possible to try them all to find the correct one. Most importantly, since the guesses all happen under speculative execution, the attack leaves no trace.

“The idea behind pointer authentication is that if all else has failed, you still can rely on it to prevent attackers from gaining control of your system. We’ve shown that pointer authentication as a last line of defense isn’t as absolute as we once thought it was,” says Joseph Ravichandran, an MIT graduate student in electrical engineering and computer science, CSAIL affiliate, and co-lead author of a new paper about PACMAN. “When pointer authentication was introduced, a whole category of bugs suddenly became a lot harder to use for attacks. With PACMAN making these bugs more serious, the overall attack surface could be a lot larger.” 

Traditionally, hardware and software attacks have lived somewhat separate lives; people see software bugs as software bugs and hardware bugs as hardware bugs. Architecturally visible software threats include things like malicious phishing attempts, malware, denial-of-service, and the like. On the hardware side, security flaws like the much-talked-about Spectre and Meltdown bugs of 2018 manipulate microarchitectural structures to steal data from computers.

The MIT team wanted to see what combining the two might achieve — taking something from the software security world, and breaking a mitigation (a feature that’s designed to protect software), using hardware attacks. “That’s the heart of what PACMAN represents — a new way of thinking about how threat models converge in the Spectre era,” says Ravichandran. 

PACMAN isn’t a magic bypass for all security on the M1 chip. PACMAN can only take an existing bug that pointer authentication protects against, and unleash that bug’s true potential for use in an attack by finding the correct PAC. There’s no cause for immediate alarm, the scientists say, as PACMAN cannot compromise a system without an existing software bug.

Pointer authentication is primarily used to protect the core operating system kernel, the most privileged part of the system. An attacker who gains control of the kernel can do whatever they’d like on a device. The team showed that the PACMAN attack even works against the kernel, which has “massive implications for future security work on all ARM systems with pointer authentication enabled,” says Ravichandran. “Future CPU designers should take care to consider this attack when building the secure systems of tomorrow. Developers should take care to not solely rely on pointer authentication to protect their software.”

“Software vulnerabilities have existed for roughly 30 years now. Researchers have come up with ways to mitigate them using various innovative techniques such as ARM pointer authentication, which we are attacking now,” says Mengjia Yan, the Homer A. Burnell Career Development Professor, assistant professor in the MIT Department of Electrical Engineering and Computer Science (EECS), CSAIL affiliate, and senior author on the team’s paper. “Our work provides insight into how software vulnerabilities that continue to exist as important mitigation methods can be bypassed via hardware attacks. It’s a new way to look at this very long-lasting security threat model. Many other mitigation mechanisms exist that are not well studied under this new compounding threat model, so we consider the PACMAN attack as a starting point. We hope PACMAN can inspire more work in this research direction in the community.” 

Original content can be found at MIT CSAIL.

Do you have experience and expertise with the topics mentioned in this article? You should consider contributing content to our CFE Media editorial team and getting the recognition you and your company deserve. Click here to start this process.

Rachel Gordon

Rachel Gordon is a Communications Manager in the Massachusetts Institute of Technology Computer Science & Artificial Intelligence Laboratory.

Related Topics
  • CFE Content
  • Featured
Previous Article
  • Education

Webcast: Using MITRE ATT&CK for ICS to Protect Your Business

  • CFE Media and Technology
  • June 13, 2022
Read More
Next Article
  • Strategies

The value of penetration testing ICS/OT environments

  • Emily Crose
  • June 17, 2022
Read More
You May Also Like
Read More

Webcast: Using MITRE ATT&CK for ICS to Protect Your Business

Read More

Protecting Critical Infrastructure eBook

Courtesy: Bundy Group
Read More

Cybersecurity mergers and acquisitions and capital markets update

Read More

Webcast: How to Protect Against Supply Chain Attacks

Courtesy of: Louisiana State University
Read More

Taking a ‘hands-on’ approach to smartphone identity verification

Courtesy: Applied Control Engineering Inc.
Read More

New funding will help University of Arizona grow the cybersecurity workforce

Hero and Rajapaske stand next to the microscope display showing an image of the multiplying B-cells. (Courtesy of: Silvia Cardarelli, Electrical and Computer Engineering, University of Michigan)
Read More

Immune to hacks: Inoculating deep neural networks to thwart attacks

Read More

Introduction to ICS security fundamentals

SUBSCRIBE

GET ON THE BEAT

Keep your finger on the pulse of top industry news

SUBSCRIBE TODAY!
VULNERABILITY PULSE
  • Mitsubishi Electric - June 14, 2022
  • Meridian Cooperative - June 14, 2022
  • Johnson Controls - June 14, 2022
  • Microsoft - June 14, 2022
  • Citrix - June 14, 2022

RECENT NEWS

  • Protecting the power grid through cyber-physical threat response
  • How to secure Industry 4.0 in a highly connected world
  • Managing external connections to your operational technology (OT) environment
  • Webcast: Addressing Cybersecurity Challenges in Industry 4.0
  • How a desert water utility helped protect critical infrastructure

EDUCATION BEAT

Introduction to Cybersecurity within Cyber-Physical Systems

Cyber-physical systems serve as the foundation and the invention base of the modern society making them critical to both government and business.

REGISTER NOW!
HACKS & ATTACKS
  • Ron Brash Interview: Expert advice on finding the root of the ransomware problem
  • Throwback Attack: How the modest Bowman Avenue Dam became the target of Iranian hackers
  • Minimizing the REvil impact delivered via Kaseya servers
  • Key takeaways from 2020 ICS-CERT vulnerabilities
Industrial Cybersecurity Pulse

Copyright 2022 CFE Media and Technology.
All rights reserved.


BETA

Version 1.0

  • Content Partners
  • Contact Us
  • Privacy Policy
  • Terms and Conditions

Input your search keywords and press Enter.

By using this website, you agree to our use of cookies. This may include personalization of content and ads, and traffic analytics. Review our Privacy Policy for more information. ACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT