Industrial Cybersecurity Pulse
  • SUBSCRIBE
  • Threats & Vulnerabilities
  • Strategies
  • IIoT & Cloud
  • Education
  • Networks
  • IT/OT
  • Facilities
  • Regulations
  • Threats & Vulnerabilities
  • Strategies
  • IIoT & Cloud
  • Education
  • Networks
  • IT/OT
  • Facilities
  • Regulations
  • Resources
  • Helpful Links
  • Editorial Calendar
  • Advertise
  • Contribute
  • Content Partners
  • Contact Us
  • Privacy Policy
  • Terms and Conditions
SUBSCRIBE
  • Resources
  • Helpful Links
  • Editorial Calendar
  • Advertise
  • Contribute
Industrial Cybersecurity Pulse
Subscribe
Industrial Cybersecurity Pulse
  • Threats & Vulnerabilities
  • Strategies
  • IIoT & Cloud
  • Education
  • Networks
  • IT/OT
  • Facilities
  • Regulations
  • Education

Using blockchain technology to protect robots

  • Adam Zewe
  • October 8, 2021
This image shows a team of robots collaborating to search for and then retrieve lost objects. The use of blockchain technology could enable secure, tamper-proof communication among the robots as they complete their task, according to new research from MIT. Courtesy: Massachusetts Institute of Technology
This image shows a team of robots collaborating to search for and then retrieve lost objects. The use of blockchain technology could enable secure, tamper-proof communication among the robots as they complete their task, according to new research from MIT. Courtesy: Massachusetts Institute of Technology
Total
0
Shares
0
0
0
0

Imagine a team of autonomous drones equipped with advanced sensing equipment, searching for smoke as they fly high above the Sierra Nevada mountains. Once they spot a wildfire, these leader robots relay directions to a swarm of firefighting drones that speed to the site of the blaze.

What would happen if one or more leader robots was hacked by a malicious agent and began sending incorrect directions? As follower robots are led farther from the fire, how would they know they had been duped?

The use of blockchain technology as a communication tool for a team of robots could provide security and safeguard against deception, according to a study by researchers at MIT and Polytechnic University of Madrid. The research may also have applications in cities where multi-robot systems of self-driving cars are delivering goods and moving people across town.

A blockchain offers a tamper-proof record of all transactions — in this case, the messages issued by robot team leaders — so follower robots can eventually identify inconsistencies in the information trail.

Leaders use tokens to signal movements and add transactions to the chain, and forfeit their tokens when they are caught in a lie, so this transaction-based communications system limits the number of lies a hacked robot could spread, according to Eduardo Castelló, a Marie Curie Fellow in the MIT Media Lab and lead author of the paper.

“The world of blockchain beyond the discourse about cryptocurrency has many things under the hood that can create new ways of understanding security protocols,” Castelló said.

Blockchain not just for Bitcoin

While a blockchain is typically used as a secure ledger for cryptocurrencies, in its essence it is a list of data structures, known as blocks, that are connected in a chain. Each block contains information it is meant to store, the “hash” of the information in the block, and the “hash” of the previous block in the chain. Hashing is the process of converting a string of text into a series of unique numbers and letters.

In this simulation-based study, the information stored in each block is a set of directions from a leader robot to followers. If a malicious robot attempts to alter the content of a block, it will change the block hash, so the altered block will no longer be connected to the chain. The altered directions could be easily ignored by follower robots.

The blockchain also provides a permanent record of all transactions. Since all followers can eventually see all the directions issued by leader robots, they can see if they have been misled.

For instance, if five leaders send messages telling followers to move north, and one leader sends a message telling followers to move west, the followers could ignore that inconsistent direction. Even if a follower robot did move west by mistake, the misled robot would eventually realize the error when it compares its moves to the transactions stored in the blockchain.

Transaction-based communication with blockchain

In the system the researchers designed, each leader receives a fixed number of tokens that are used to add transactions to the chain — one token is needed to add a transaction. If followers determine the information in a block is false, by checking what the majority of leader robots signaled at that particular step, the leader loses the token. Once a robot is out of tokens it can no longer send messages.

“We envisioned a system in which lying costs money. When the malicious robots run out of tokens, they can no longer spread lies. So, you can limit or constrain the lies that the system can expose the robots to,” Castelló said.

The researchers tested their system by simulating several follow-the-leader situations where the number of malicious robots was known or unknown. Using a blockchain, leaders sent directions to follower robots that moved across a Cartesian plane, while malicious leaders broadcast incorrect directions or attempted to block the path of follower robots.

The researchers found that, even when follower robots were initially misled by malicious leaders, the transaction-based system enabled all followers to eventually reach their destination. And because each leader has an equal, finite number of tokens, the researchers developed algorithms to determine the maximum number of lies a malicious robot can tell.

“Since we know how lies can impact the system, and the maximum harm that a malicious robot can cause in the system, we can calculate the maximum bound of how misled the swarm could be. So, we could say, if you have robots with a certain amount of battery life, it doesn’t really matter who hacks the system, the robots will have enough battery to reach their goal,” Castelló said.

In addition to allowing a system designer to estimate the battery life the robots need to complete their task, the algorithms also enable the user to determine the amount of memory required to store the blockchain, the number of robots that will be needed, and the length of the path they can travel, even if a certain percentage of leader robots are hacked and become malicious.

“You can design your system with these tradeoffs in mind and make more informed decisions about what you want to do with the system you are going to deploy,” Castelló said.

In the future, Castelló hopes to build off this work to create new security systems for robots using transaction-based interactions. He sees it as a way to build trust between humans and groups of robots.

“When you turn these robot systems into public robot infrastructure, you expose them to malicious actors and failures. These techniques are useful to be able to validate, audit, and understand that the system is not going to go rogue. Even if certain members of the system are hacked, it is not going to make the infrastructure collapse,” he said.

Do you have experience and expertise with the topics mentioned in this article? You should consider contributing content to our CFE Media editorial team and getting the recognition you and your company deserve. Click here to start this process.

Adam Zewe

Adam Zewe, MIT News Office

Related Topics
  • CFE Content
  • Featured
  • news
Previous Article
Courtesy: CFE Media
  • Hacks & Attacks

Throwback Attack: Petya, the red skull of ransomware

  • Christina Miller
  • October 7, 2021
Read More
Next Article
Image courtesy: Brett Sayles
  • Strategies

Rise in attacks has led to a flood of cybersecurity job openings

  • Clint Bundy
  • October 8, 2021
Read More
You May Also Like
Read More

Protecting Critical Infrastructure eBook

Courtesy: Bundy Group
Read More

Cybersecurity mergers and acquisitions and capital markets update

Read More

Webcast: How to Protect Against Supply Chain Attacks

Courtesy of: Louisiana State University
Read More

Taking a ‘hands-on’ approach to smartphone identity verification

Courtesy: Applied Control Engineering Inc.
Read More

New funding will help University of Arizona grow the cybersecurity workforce

Hero and Rajapaske stand next to the microscope display showing an image of the multiplying B-cells. (Courtesy of: Silvia Cardarelli, Electrical and Computer Engineering, University of Michigan)
Read More

Immune to hacks: Inoculating deep neural networks to thwart attacks

Read More

Introduction to ICS security fundamentals

Courtesy: CFE Media and Technology
Read More

NSF award will help IUPUI train, increase diversity of next wave of cybersecurity engineers

SUBSCRIBE

GET ON THE BEAT

Keep your finger on the pulse of top industry news

SUBSCRIBE TODAY!
VULNERABILITY PULSE
  • Berkeley Internet Name Domain (BIND) - May 19, 2022
  • Mitsubishi Electric - May 19, 2022
  • Apache - May 16, 2022
  • CISA - May 16, 2022
  • Joint Cybersecurity Advisory - May 17, 2022

RECENT NEWS

  • Throwback Attack: Hackers attempt to flood Israeli water supply with chlorine
  • Will CISA recommend securing industrial control systems?
  • How to implement layered industrial cybersecurity in volatile times
  • Throwback Attack: DDoS attacks are born in the Big Ten
  • Improve two-factor authentication system security

EDUCATION BEAT

Introduction to Cybersecurity within Cyber-Physical Systems

Cyber-physical systems serve as the foundation and the invention base of the modern society making them critical to both government and business.

REGISTER NOW!
HACKS & ATTACKS
  • Ron Brash Interview: Expert advice on finding the root of the ransomware problem
  • Throwback Attack: How the modest Bowman Avenue Dam became the target of Iranian hackers
  • Minimizing the REvil impact delivered via Kaseya servers
  • Key takeaways from 2020 ICS-CERT vulnerabilities
Industrial Cybersecurity Pulse

Copyright 2022 CFE Media and Technology.
All rights reserved.


BETA

Version 1.0

  • Content Partners
  • Contact Us
  • Privacy Policy
  • Terms and Conditions

Input your search keywords and press Enter.

By using this website, you agree to our use of cookies. This may include personalization of content and ads, and traffic analytics. Review our Privacy Policy for more information. ACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Non-necessary
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.
SAVE & ACCEPT